PHYSICS OF NUCLEAR MEDICINE Physics of nuclear medicine By the end of this section, you will be able to: - 1- Define the half-life. - 2- Give the essential characteristics of alpha, beta, and gamma rays. - 3- What is the mass of 1ci of 227Th? If the half-life is 1.90 years. # **Radioactivity** A certain natural elements, heavy have unstable that disintegrate to emit various rays. Alpha(α), Beta(β), and Gamma(γ) rays. | Alpha(α) | Beta(β) | Gamma(γ) | |--|---|---| | 1-Positive charge | Negative charge | Without charge | | 2-Affected by magnetic& electric field | Affected by magnetic& electric field | Doesn't affected | | 3-Stop in a few centimeter of air (low penetrating power | It is stopped in a few meters of air and a few millimeters of a tissue(the penetrating power is more than α and less than γ | High energy photon(high penetrating power). | | 4-Is Helium atom(₂ He ⁴) | High speed electron | It is photon | | 5-Has a fixed energy for a given source | Has spread of energy up to max | Has a fixed energy for a given source | ### **Isotpes** Nuclei of a given element with different numbers of neutrons. There are two types: 1-Stable isotopes if they are not radioactive. Ex:(12C,13C) 2-Radioisotopes if they are radioactive. Ex: (11C,14C,15C) ### **Radio-nuclides:** Is used when several radioactive elements are involved. (Radioisotopes are used when referring to single element). ### **Neutrino:** A mass less, charge less, particle, Takes up the difference in energy between the actual beta energy and the maximum beta energy. ### Alpha (α): Is helium atom(4_2 He) with mass number (A) = 4 and atomic number (Z) = 2. The result of alpha emission is a daughter whose atomic number is two less than of the parent, and whose atomic mass number is four less than that of the parent. In the case of 210 Po for example, the reaction is $$^{210}_{84}$$ Po ——— $^{4}_{2}$ He + $^{206}_{82}$ Pb Or in general $$^{4}_{z}X \longrightarrow ^{4}_{2}He + ^{A-4}_{z-2}Y$$ ## **Beta emission:** $$^{32}_{15}P \longrightarrow ^{32}_{16}S + ^{0}_{-1}e$$ Or positron $$^{22}_{11}$$ Na ——— $^{22}_{10}$ Na + $^{0}_{1}$ e ## **Activity of Radioactive materials** - -half-life - -mean life - -decay constant - -background ## Half life (T_{1/2}): The time needed for half of the radioactive nuclei to decay. $$A = A_0 e^{-\lambda t}$$(1) #### Where: A: activity in disintegration per second after time(t) A_o: initial activity λ: decay constant(sec⁻¹,hour⁻¹,year⁻¹) t: time since activity (sec, hour, year) $$T_{1/2} = 0.693 / \lambda$$ (3) $A = \lambda N = (0.693 / T_{1/2}) (mass/atomic)$ weight)x Avogadro number 1 year = 3.15 x 10^7 sec $T_{1/2}$ = should be in second The average or mean time T = $1/\lambda$ 1/ λ from the equation (3) = 1.44 $T_{1/2}$ So T = 1.44 $T_{1/2}$ T mean life time (tau) is the average lifetime of a radioactive particle before decay. #### Example 1. a. If you have 1g of pure potassium 40 (40 K) that is experimentally determined to emit about 10 5 beta rays per second. What is the decay constant λ ? #### **Solution:** $A = \lambda N = \lambda$ (mass/atomic weight)x Avogadro number) $$10^5 = \lambda \times 1/40 \times 6.02 \times 10^{23}$$ So $$\lambda = 6.7 \times 10^{-18} \text{ s}^{-1}$$ b. Estimate the half-life of ⁴⁰K from . $$T_{1/2} = 0.693 / \lambda = 10^{17}$$ $$T_{1/2} = 10^{17}/3.15 \times 10^7 = 3 \times 10^9 \text{ years}$$ ### **Back ground counts:** Is the counts without the radioactive source and this is due cosmic rays, natural radioactivityetc ## **Units of activity:** The unit of activity of radioactive is Ci (Curie) 1 Ci = 3.7×10^{10} dis/s of Bq (Becquerel) (micro) μ Ci = 10⁻⁶Ci (nano) η Ci = 10⁻⁹Ci (pico) ρ Ci = 10⁻¹² Ci # **Questions:** 1- A solution counting a radioactive isotope which emits β-particles with half-life 12.26 days' surroundings a Geiger counter which records 480 counts/minute. What counting rate will be obtained 49.04 days later? #### **Solution** $$A_o = 480 \text{ counts/min}$$ $$A = ?$$ $$t = 49.04 days$$ $$T_{1/2} = 12.26 \text{ days}$$ $$\lambda = 0.693 / T_{1/2} = 0.693 / 12.26$$ days $$A = A_0 e^{-\lambda t}$$ A =480 counts/min x e $$-(0.693/12.26 \text{ days}) 49.04 \text{ days}$$ $$A = 480 \text{ counts/min } x e -4(0.693)$$ $$A = 480 \text{ counts/min } x 1/2^4$$ $$A = 480/16 = 30 \text{ counts/min}$$ 2- Radium 226 has a half life of 1620 years. What is the mass of a sample which undergoes 20000 disintegrations per second? ### **Solution:** $$T_{1/2}$$ = 1620 years = 1620 x 3.15 x 10⁷ s λ = 0.693/ $T_{1/2}$ = 0.693/(1620 x 3.15 x 10⁷ s) A = 2x 10⁴ dis/s A = N λ 2x 10⁴ dis/s = (m/226) x 6.02 x 10²³ x 0.693/(1620 x 3.15 x 10⁷ s) m = 55x 10⁻⁶g 3- What is the mass of 1ci of ²²⁷Th? If the half-life is 1.90 years. ### **Solution:** $$T_{1/2} = 1.90 \text{ years} = 1.90 \text{ x } 3.15 \text{ x } 10^7 \text{ s}$$ $\lambda = 0.693 / T_{1/2} = 0.693 / (1.90 \text{ x } 3.15 \text{ x})$ 10^7 s $A = 1 \text{ ci} = 3.7 \text{ x } 10^{10} \text{ dis/s}$ $A = N \lambda$ $3.7 \text{ x } 10^{10} \text{ dis/s} = (m/227) \times 6.02 \times 10^{23} \text{ x}$ $0.693 / (1.90 \text{ x } 3.15 \text{ x } 10^7 \text{ s})$ $m = 1.21 \times 10^{-3} \text{g}$ 4- lodine-131 is used to destroy thyroid tissue in the treatment of an overactive thyroid. The half – life of ¹³¹I is 8 days. If a hospital receives a shipment of 200g of ¹³¹I, how much ¹³¹I would remain after 32 days?4 ### **Solution:** $$\lambda = 0.693/ T_{1/2} = 0.693/8 days$$ $t = 32 days$ $A = A_0 e^{-\lambda t}$ $m = m_0 e^{-\lambda t}$ $m = 200g x e^{-(0.693/8 days)x32 days}$ $m = 200g x e^{-4(0.693)} = 200g x 1/16 = 12.5g$ 5- If 10mg of iodine-131 is given to a patient, how much is left after 24 days? The half – life of ¹³¹I is 8 days. ## **Solution:** $$\lambda = 0.693 / T_{1/2} = 0.693 / 8 days$$ $$m = m_0 e^{-\lambda t}$$ $$m = 10x 10^{-3}g x e^{-(0.693/8days)x24days}$$ $$m = 10^{-2}g \times e^{-3(0.693)} = 10^{-2}g \times 1/8 = 1.25$$ $$x10^{-3}g = 1.25mg$$ 6- Technetium -99m (99mTc) is used for brain scans, if a laboratory receives a shipment of 200gm of this isotope and after 24 hours only 12.5 g of this isotope remain, what is the half-life of ^{99m}Tc. $$m_o = 200g$$ $m = 12.5g$ $t = 24 \text{ hr}$ $m = m_0 e^{-\lambda t}$ $m_o/m = e^{-\lambda t}$ $200/12.5 = e^{24 \lambda}$ $16 = e^{24 \lambda}$ $\log 16 = 24 \lambda \log 2.7$ $\lambda = 0.116 \text{ hr}^{-1}$ $T_{1/2} = 0.693/0.116 = 6 \text{ hr}$ 7- Mercury-197 is used for kidney scans and has a halflife of 3 days. If the amount of mercury -197 needed for a study is 1.0 g and the time allowed for shipment is 15 days, how much mercury -197 will need to be ordered. $$m = 1g$$ $m_o = ?$ $T_{1/2} = 3 days$ $$\lambda = 0.693/3 days$$ $m_o/m = e^{\lambda t}$ $m_o/1 = e^{(0.693/3 days)15 days}$ $m_o = 32g$ 8- The half —life of strontium - 90 is 25 years, how much half-life will it take for 10g of it to be reduced to 1.25g. **Answer: 3 T**_{1/2} 9-The half-life of ^{99m}Tc is 6 hours, after how much time will 1/16 of the radioisotope remain. Answer: 24 hours 10- Radioactive ²⁴Na, which has a half life of 15 h, is sent from laboratory to a hospital. What should be its activity when it leaves laboratory if the activity is to be 10mCi (milli curies) when it used in the hospital 3 h later. Answer: 11.5mCi